All-Electrical 9-Bit Skyrmion-Based Racetrack Memory Designed with Laser Irradiation.
Bin HeRiccardo TomaselloXuming LuoRan ZhangZhuyang NieMario CarpentieriXiu Feng HanGiovanni FinocchioGuoqiang YuPublished in: Nano letters (2023)
Racetrack memories with magnetic skyrmions have recently been proposed as a promising storage technology. To be appealing, several challenges must still be faced for the deterministic generation of skyrmions, their high-fidelity transfer, and accurate reading. Here, we realize the first proof-of-concept of a 9-bit skyrmion racetrack memory with all-electrical controllable functionalities implemented in the same device. The key ingredient is the generation of a tailored nonuniform distribution of magnetic anisotropy via laser irradiation in order to (i) create a well-defined skyrmion nucleation center, (ii) define the memory cells hosting the information coded as the presence/absence of skyrmions, and (iii) improve the signal-to-noise ratio of anomalous Hall resistance measurements. This work introduces a strategy to unify previous findings and predictions for the development of a generation of racetrack memories with robust control of skyrmion nucleation and position, as well as effective skyrmion electrical detection.