Login / Signup

Ultrafast Photocatalytic Detoxification of Mustard Gas Simulants by a Mesoporous Metal-Organic Framework with Dangling Porphyrin Molecules.

Ming-Min WuJuan SuDong LuoBing-Chen CaiZe-Lin ZhengDe-Shan BinYan Yan LiXiao-Ping Zhou
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Developing effective catalysts to degrade chemical warfare agents is of great significance. Herein, a mesoporous MIL-101(Cr) composite material dangled with porphyrin molecules (denote as TCPP@MIL-101(Cr), TCPP = tetra(4-carboxyphenyl)porphyrin) is reported, which can be used as a heterogeneous photocatalyst for detoxification of mustard gas simulants 2-chloroethyl ethyl sulfide (CEES) to 2-chloroethyl ethyl sulfoxide (CEESO) with a half-life of 1 min. The catalytic performance of TCPP@MIL-101(Cr) is comparable to that of homogeneous molecular porphyrin. Mechanistic studies reveal that both 1 O 2 and O 2 •- are efficiently generated and play vital roles in the oxidation reaction. Gold nanoparticles (AuNPs) are attached to the TCPP@MIL-101(Cr) to further enhance the catalytic activity with a benchmark half-life of 45 s, which is the fastest record so far. A medical mask loaded TCPP@MIL-101(Cr) is fabricated for practical applications, which can selectively photoxidize CEES to CEESO under sunlight and air atmosphere, exhibiting the best degradation performance among the reported fabric-like composite materials.
Keyphrases