Login / Signup

Effect of Freeze-Thaw Cycles on Juice Properties, Volatile Compounds and Hot-Air Drying Kinetics of Blueberry.

Lin ZhuXianrui LiangYushuang LuShiyi TianJie ChenFubin LinSheng Fang
Published in: Foods (Basel, Switzerland) (2021)
This paper studied the effects of freeze-thaw (FT) cycles on the juice properties and aroma profiles, and the hot-air drying kinetics of frozen blueberry. After FT treatment, the juice yield increased while pH and total soluble solids of the juice keep unchanged. The total anthocyanins contents and DPPH antioxidant activities of the juice decreased by FT treatments. The electronic nose shows that FT treatments significantly change the aroma profiles of the juice. The four main volatile substances in the fresh juice are (E)-2-hexenal, α-terpineol, hexanal and linalyl formate, which account for 48.5 ± 0.1%, 17.6 ± 0.2%, 14.0 ± 1.5% and 7.8 ± 2.7% of relative proportions based on total ion chromatogram (TIC) peak areas. In the FT-treated samples, the amount of (E)-2-hexenal and hexanal decreased significantly while α-terpineol and linalyl formate remained almost unchanged. Repeated FT cycles increased the ethanol content and destroyed the original green leafy flavor. Finally, the drying kinetics of FT-treated blueberries was tested. One FT treatment can shorten the drying time by about 30% to achieve the same water content. The Deff values of the FT-treated sample are similar, which are about twice as large as the value of the fresh sample. The results will be beneficial for the processing of frozen blueberry into juice or dried fruits.
Keyphrases
  • oxidative stress
  • mass spectrometry
  • high resolution
  • combination therapy
  • replacement therapy