Nanostructured N, S, and P-Doped Elaeagnus Angustifolia Gum-Derived Porous Carbon with Electrodeposited Silver for Enhanced Electrochemical Sensing of Acetaminophen.
Xamxikamar MamatHaji Akber AisaLongyi ChenPublished in: Nanomaterials (Basel, Switzerland) (2023)
Acetaminophen (N-acetyl-p-aminophenol, APAP) is regularly used for antipyretic and analgesic purposes. Overdose or long-term exposure to APAP could lead to liver damage and hepatotoxicity. In this study, the approach of enhanced electrochemical detection of APAP by nanostructured biomass carbon/silver was developed. Porous biomass carbon derived from Elaeagnus Angustifolia gum was prepared by pyrolysis with co-doping of electron-rich elements of nitrogen, sulfur, and phosphorus. The electrodeposition of silver onto a glassy carbon electrode modified with porous carbon could enhance the sensing signal towards APAP. Two linear ranges from 61 nM to 500 μM were achieved with a limit of detection of 33 nM. The developed GCE sensor has good anti-interference, stability, reproducibility, and human urine sample analysis performance. The silver-enhanced biomass carbon GCE sensor extends the application of biomass carbon, and its facile preparation approach could be used in constructing disposable sensing chips in the future.