Transcriptomic Analysis of MAPK Signaling in NSC-34 Motor Neurons Treated with Vitamin E.
Luigi ChiricostaAgnese GugliandoloGiuseppe TardioloPlacido BramantiEmanuela MazzonPublished in: Nutrients (2019)
Vitamin E family is composed of different tocopherols and tocotrienols that are well-known as antioxidants but that exert also non-antioxidant effects. Oxidative stress may be involved in the progression of neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), characterized by motor neuron death. The aim of the study was the evaluation of the changes induced in the transcriptional profile of NSC-34 motor neurons treated with α-tocopherol. In particular, cells were treated for 24 h with 10 µM α-tocopherol, RNA was extracted and transcriptomic analysis was performed using Next Generation Sequencing. Vitamin E treatment modulated MAPK signaling pathway. The evaluation revealed that 34 and 12 genes, respectively belonging to "Classical MAP kinase pathway" and "JNK and p38 MAP kinase pathway", were involved. In particular, a downregulation of the genes encoding for p38 (Log2 fold change -0.87 and -0.67) and JNK (Log2 fold change -0.16) was found. On the contrary, the gene encoding for ERK showed a higher expression in cells treated with vitamin E (Log2 fold change 0.30). Since p38 and JNK seem more involved in cell death, while ERK in cell survival, the data suggested that vitamin E treatment may exert a protective role in NSC-34 motor neurons. Moreover, Vitamin E treatment reduced the expression of the genes which encode proteins involved in mitophagy. These results indicate that vitamin E may be an efficacious therapy in preventing motor neuron death, opening new strategies for those diseases that involve motor neurons, including ALS.
Keyphrases
- signaling pathway
- induced apoptosis
- oxidative stress
- pi k akt
- cell death
- amyotrophic lateral sclerosis
- cell cycle arrest
- epithelial mesenchymal transition
- spinal cord
- genome wide
- diabetic rats
- endoplasmic reticulum stress
- cell proliferation
- genome wide identification
- gene expression
- copy number
- electronic health record
- spinal cord injury
- stem cells
- protein kinase
- deep learning
- cell therapy
- machine learning
- bioinformatics analysis
- drug induced
- artificial intelligence
- single cell
- replacement therapy
- heat shock protein
- high density
- heat stress
- transcription factor