Restored Ketosis Drives Anticancer Immunity in Colorectal Cancer.
David C MontroseLorenzo GalluzziPublished in: Cancer research (2022)
Dietary interventions including alterations in the amount or type of specific macronutrients have been shown to mediate antineoplastic effects in preclinical tumor models, but the underlying mechanisms are only partially understood. In this issue of Cancer Research, Wei and colleagues demonstrate that restoring ketogenesis in the colorectal cancer microenvironment decreases the KLF5-dependent synthesis of CXCL12 by cancer-associated fibroblasts, ultimately enhancing tumor infiltration by immune effector cells and increasing the therapeutic efficacy of an immune checkpoint inhibitor specific for PD-1. These findings provide a novel, therapeutically actionable link between suppressed ketogenesis and immunoevasion in the colorectal cancer microenvironment. See related article by Wei et al., p. 1575.