Login / Signup

Micronano Lasers Based on Aggregation-Induced Emission Molecules: Diverse Resonant Cavities Investigation.

Qikai WangYi NiuShoubin ZhangYufeng HuZhidong LouYan-Bing HouYong Sheng ZhaoFeng TengQiuhong Cui
Published in: ACS applied materials & interfaces (2024)
Aggregation-induced emission (AIE) molecules have great potential to enhance the performance of micronano lasers due to their excellent aggregated luminescence properties, so it is valuable to expand their applications in micronano lasers. In this work, a typical AIE active fluorescent dye motif 9,10-bis(2,2-diphenylvinyl) anthracene (BDPVA) was selected as the gain medium. First, drop-casting was used to fabricate BDPVA single-crystal nanowires, which can be used as Fabry-Perot (FP)-type resonators with a lasing threshold of 49.4 μJ/cm 2 . Furthermore, we innovatively doped BDPVA molecules as gain mediums into external polymer Whispering-Gallery-Mode (WGM)-type resonators via the emulsion self-assembly method. Fabricated BDPVA-doped polystyrene (PS) microspheres exhibit a much lower lasing threshold of 9.04 μJ/cm 2 . These results prove that the BDPVA molecules, in addition to realizing the reported AIE single-crystal lasers, can also be used as a guest-doped gain medium in the resonant cavity for obtaining better fluorescence gain. In addition, multimode tunability of two types of lasers has been successfully achieved by tuning the structure of the resonant cavity. This work further expands the application potential of AIE materials and will provide a useful reference for the rational design and fabrication of photonic micronano laser components using AIE materials.
Keyphrases