Listeria adhesion protein orchestrates caveolae-mediated apical junctional remodeling of epithelial barrier for Listeria monocytogenes translocation.
Rishi DroliaDonald B BryantShivendra TenguriaZuri A Jules-CulverJessie ThindBreanna AmelunkeDongqi LiuNicholas L F GallinaKrishna K MishraManalee SamaddarManoj R SawaleDharmendra K MishraAbigail D CoxArun K BhuniaPublished in: mBio (2024)
The cellular junctional architecture remodeling by Listeria adhesion protein-heat shock protein 60 (LAP-Hsp60) interaction for Listeria monocytogenes ( Lm ) passage through the epithelial barrier is incompletely understood. Here, using the gerbil model, permissive to internalin (Inl) A/B-mediated pathways like in humans, we demonstrate that Lm crosses the intestinal villi at 48 h post-infection. In contrast, the single isogenic ( lap - or Δ inlA ) or double ( lap - Δ inlA ) mutant strains show significant defects. LAP promotes Lm translocation via endocytosis of cell-cell junctional complex in enterocytes that do not display luminal E-cadherin. In comparison, InlA facilitates Lm translocation at cells displaying apical E-cadherin during cell extrusion and mucus expulsion from goblet cells. LAP hijacks caveolar endocytosis to traffic integral junctional proteins to the early and recycling endosomes. Pharmacological inhibition in a cell line and genetic knockout of caveolin-1 in mice prevents LAP-induced intestinal permeability, junctional endocytosis, and Lm translocation. Furthermore, LAP-Hsp60-dependent tight junction remodeling is also necessary for InlA access to E-cadherin for Lm intestinal barrier crossing in InlA-permissive hosts.IMPORTANCE Listeria monocytogenes ( Lm ) is a foodborne pathogen with high mortality (20%-30%) and hospitalization rates (94%), particularly affecting vulnerable groups such as pregnant women, fetuses, newborns, seniors, and immunocompromised individuals. Invasive listeriosis involves Lm 's internalin (InlA) protein binding to E-cadherin to breach the intestinal barrier. However, non-functional InlA variants have been identified in Lm isolates, suggesting InlA-independent pathways for translocation. Our study reveals that Listeria adhesion protein (LAP) and InlA cooperatively assist Lm entry into the gut lamina propria in a gerbil model, mimicking human listeriosis in early infection stages. LAP triggers caveolin-1-mediated endocytosis of critical junctional proteins, transporting them to early and recycling endosomes, facilitating Lm passage through enterocytes. Furthermore, LAP-Hsp60-mediated junctional protein endocytosis precedes InlA's interaction with basolateral E-cadherin, emphasizing LAP and InlA's cooperation in enhancing Lm intestinal translocation. This understanding is vital in combating the severe consequences of Lm infection, including sepsis, meningitis, encephalitis, and brain abscess.
Keyphrases
- listeria monocytogenes
- heat shock protein
- pregnant women
- protein protein
- heat shock
- induced apoptosis
- endothelial cells
- single cell
- amino acid
- magnetic resonance
- escherichia coli
- coronary artery disease
- stem cells
- heat stress
- cardiovascular disease
- type diabetes
- gene expression
- binding protein
- dna methylation
- mouse model
- air pollution
- cell cycle arrest
- bone marrow
- cell migration
- multiple sclerosis
- adipose tissue
- cerebrospinal fluid
- cerebral ischemia
- high glucose
- acute kidney injury
- endoplasmic reticulum stress
- diabetic rats
- cystic fibrosis
- wild type