Login / Signup

Accurate Calculation of Many-Body Energies in Water Clusters Using a Classical Geometry-Dependent Induction Model.

Kristina M HermanAnthony J StoneSotiris S Xantheas
Published in: Journal of chemical theory and computation (2023)
We incorporate geometry-dependent distributed multipole and polarizability surfaces into an induction model that is used to describe the 3- and 4-body terms of the interaction between water molecules. The moment expansion is carried out up to the hexadecapole with the multipoles distributed on the atom sites. Dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole distributed polarizabilities are used to represent the response of the multipoles to an electric field. We compare the model against two large databases consisting of 43,844 3-body terms and 3,603 4-body terms obtained from high level ab initio calculations previously used to fit the MB-pol and q-AQUA classical interaction potentials for water. The classical induction model with no adjustable parameters reproduces the ab initio 3-/4-body terms contained in these two databases with a root-mean-square error (RMSE) of 0.104/0.058 and a mean-absolute error (MAE) of 0.054/0.026 kcal/mol, respectively. These results are on par with the ones obtained by fitting the same data using over 14,000 (for the 3-body) and 200 (for the 4-body) parameters via Permutationally Invariant Polynomials (PIPs). This demonstrates the accuracy of this physically motivated model in describing the 3- and 4-body terms in the interactions between water molecules with no adjustable parameters. The triple-dipole-dispersion energy, included in the calculation of the 3-body energy, was found to be small but not quite negligible. The model represents a practical, efficient, and transferable approach for obtaining accurate nonadditive interactions for multicomponent systems without the need to perform tens of thousands of high level electronic structure calculations and fitting them with PIPs.
Keyphrases
  • molecular dynamics
  • high performance liquid chromatography
  • high resolution
  • big data
  • tandem mass spectrometry
  • machine learning
  • cystic fibrosis
  • electronic health record
  • ms ms
  • monte carlo
  • solid phase extraction