Login / Signup

Enhancing the Mechanical Stability of 2D Fullerene with a Graphene Substrate and Encapsulation.

Taotao YuJianyu LiMingjun HanYinghe ZhangHaipeng LiQing PengHo-Kin Tang
Published in: Nanomaterials (Basel, Switzerland) (2023)
Recent advancements have led to the synthesis of novel monolayer 2D carbon structures, namely quasi-hexagonal-phase fullerene (qHPC 60 ) and quasi-tetragonal-phase fullerene (qTPC 60 ). Particularly, qHPC 60 exhibits a promising medium band gap of approximately 1.6 eV, making it an attractive candidate for semiconductor devices. In this study, we conducted comprehensive molecular dynamics simulations to investigate the mechanical stability of 2D fullerene when placed on a graphene substrate and encapsulated within it. Graphene, renowned for its exceptional tensile strength, was chosen as the substrate and encapsulation material. We compared the mechanical behaviors of qHPC 60 and qTPC 60 , examined the influence of cracks on their mechanical properties, and analyzed the internal stress experienced during and after fracture. Our findings reveal that the mechanical reliability of 2D fullerene can be significantly improved by encapsulating it with graphene, particularly strengthening the cracked regions. The estimated elastic modulus increased from 191.6 (qHPC 60 ) and 134.7 GPa (qTPC 60 ) to 531.4 and 504.1 GPa, respectively. Moreover, we observed that defects on the C60 layer had a negligible impact on the deterioration of the mechanical properties. This research provides valuable insights into enhancing the mechanical properties of 2D fullerene through graphene substrates or encapsulation, thereby holding promising implications for future applications.
Keyphrases
  • solar cells
  • molecular dynamics simulations
  • room temperature
  • carbon nanotubes
  • walled carbon nanotubes
  • molecular docking
  • genome wide
  • current status
  • single cell