Coassembled Multicomponent Protein Nanoparticles Elicit Enhanced Antibacterial Activity.
Christian K O DzuvorHsin-Hui ShenVictoria S HaritosLizhong HePublished in: ACS nano (2024)
The waning pipeline of the useful antibacterial arsenal has necessitated the urgent development of more effective antibacterial strategies with distinct mechanisms to rival the continuing emergence of resistant pathogens, particularly Gram-negative bacteria, due to their explicit drug-impermeable, two-membrane-sandwiched cell wall envelope. Herein, we have developed multicomponent coassembled nanoparticles with strong bactericidal activity and simultaneous bacterial cell envelope targeting using a peptide coassembly strategy. Compared to the single-component self-assembled nanoparticle counterparts or cocktail mixtures of these at a similar concentration, coassembled multicomponent nanoparticles showed higher bacterial killing efficiency against Acinetobacter baumannii , Pseudomonas aeruginosa , and Escherichia coli by several orders of magnitude (about 100-1,000,000-fold increase). Comprehensive confocal and electron microscopy suggest that the superior antibacterial activity of the coassembled nanoparticles proceeds via multiple complementary mechanisms of action, including membrane destabilization, disruption, and cell wall hydrolysis, actions that were not observed with the single nanoparticle counterparts. To understand the fundamental working mechanisms behind the improved performance of coassembled nanoparticles, we utilized a "dilution effect" system where the antibacterial components are intermolecularly mixed and coassembled with a non-antibacterial protein in the nanoparticles. We suggest that coassembled nanoparticles mediate enhanced bacterial killing activity by attributes such as optimized local concentration, high avidity, cooperativity, and synergy. The nanoparticles showed no cytotoxic or hemolytic activity against tested eukaryotic cells and erythrocytes. Collectively, these findings reveal potential strategies for disrupting the impermeable barrier that Gram-negative pathogens leverage to restrict antibacterial access and may serve as a platform technology for potential nano-antibacterial design to strengthen the declining antibiotic arsenal.
Keyphrases
- gram negative
- silver nanoparticles
- pseudomonas aeruginosa
- cell wall
- multidrug resistant
- acinetobacter baumannii
- escherichia coli
- drug resistant
- walled carbon nanotubes
- stem cells
- single cell
- anti inflammatory
- gene expression
- risk assessment
- cystic fibrosis
- mesenchymal stem cells
- biofilm formation
- signaling pathway
- electron microscopy
- climate change
- cell death
- protein protein
- ms ms
- candida albicans
- medical education