Login / Signup

FaRCg1: a quantitative trait locus conferring resistance to Colletotrichum crown rot caused by Colletotrichum gloeosporioides in octoploid strawberry.

Ashlee AnciroJozer MangandiSujeet VermaNatalia PeresVance M WhitakerSeonghee Lee
Published in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2018)
Colletotrichum crown rot (CCR) is an important disease of strawberry (Fragaria ×ananassa) throughout the Southeastern US and in subtropical climates around the world, where hot and humid conditions facilitate rapid disease development. Yet no resistance loci have been described to date, as genetic studies have been historically difficult in allo-octoploid (2n = 8x = 56) strawberry. In the present study, we investigate the genetic architecture of resistance to CCR. Four population sets from the University of Florida were inoculated in four different seasons from 2013-2014 to 2016-2017. Two large, multiparental discovery population sets were used for QTL discovery, and two validation sets of cultivars and advanced selections representing the parent pool of the breeding program were also assessed. Subgenome-specific single-nucleotide polymorphism (SNP) markers were mapped, and FlexQTL™ software was utilized to perform a Bayesian, pedigree-based QTL analysis. A quantitative trait locus on linkage group 6B, which we name FaRCg1, accounts for most of the genetic variation for resistance in the discovery sets (26.8-29.8% in 2013-2014 and 17% in 2015-2016). High-throughput marker assays were developed for the most significant SNPs which correlated with the mode of the QTL region. The discovery and characterization of the FaRCg1 locus and the molecular tools developed from it will be utilized to achieve increased genetic gains for resistance.
Keyphrases
  • genome wide
  • high throughput
  • small molecule
  • dna methylation
  • high density
  • copy number
  • high resolution
  • single cell
  • dendritic cells
  • genome wide association study
  • immune response
  • human immunodeficiency virus