Login / Signup

Dynamic Response of Ionic Current in Conical Nanopores.

Zhe LiuLong MaHongwen ZhangJiakun ZhuangHaosheng ChenZuzanna S SiwyYinghua Qiu
Published in: ACS applied materials & interfaces (2024)
Ionic current rectification (ICR) of charged conical nanopores has various applications in fields including nanofluidics, biosensing, and energy conversion, whose function is closely related to the dynamic response of nanopores. The occurrence of ICR originates from the ion enrichment and depletion in conical pores, whose formation is found to be affected by the scanning rate of voltages. Here, through time-dependent simulations, we investigate the variation of ion current under electric fields and the dynamic formation of ion enrichment and depletion, which can reflect the response time of conical nanopores. The response time of nanopores when ion enrichment forms, i.e., at the "on" state is significantly longer than that with the formation of ion depletion, i.e., at the "off" state. Our simulation results reveal the regulation of response time by different nanopore parameters including the surface charge density, pore length, tip, and base radius, as well as the applied conditions such as the voltage and bulk concentration. The response time of nanopores is closely related to the surface charge density, pore length, voltage, and bulk concentration. Our uncovered dynamic response mechanism of the ionic current can guide the design of nanofluidic devices with conical nanopores, including memristors, ionic switches, and rectifiers.
Keyphrases
  • solid state
  • single molecule
  • risk assessment
  • molecular dynamics
  • high resolution