Login / Signup

Kinetic Monte Carlo simulation analysis of the conductance drift in Multilevel HfO 2 -based RRAM devices.

David MaldonadoA BaroniSamuel AldanaK Dorai Swamy ReddyStefan PechmannChristian WengerJuan Bautista RoldánE Pérez
Published in: Nanoscale (2024)
The drift characteristics of valence change memory (VCM) devices have been analyzed through both experimental analysis and 3D kinetic Monte Carlo (kMC) simulations. By simulating six distinct low-resistance states (LRS) over a 24-hour period at room temperature, we aim to assess the device temporal stability and retention. Our results demonstrate the feasibility of multi-level operation and reveal insights into the conductive filament (CF) dynamics. The cumulative distribution functions (CDFs) of read-out currents measured at different time intervals provide a comprehensive view of the device performance for the different conductance levels. These findings not only enhance the understanding of VCM device switching behaviour but also allow the development of strategies for improving retention, thereby advancing the development of reliable nonvolatile resistive switching memory technologies.
Keyphrases
  • monte carlo
  • room temperature
  • working memory
  • cystic fibrosis
  • blood pressure
  • genome wide
  • gene expression
  • dna methylation
  • tissue engineering