Login / Signup

Estrogen Regulates MAPK-Related Genes through Genomic and Nongenomic Interactions between IGF-I Receptor Tyrosine Kinase and Estrogen Receptor-Alpha Signaling Pathways in Human Uterine Leiomyoma Cells.

Linda YuAlicia B MooreLysandra CastroXiaohua GaoHoang-Long C HuynhMichelle KlippelNorris D FlaglerYi LuGrace E KisslingDarlene Dixon
Published in: Journal of signal transduction (2012)
Estrogen and growth factors play a major role in uterine leiomyoma (UtLM) growth possibly through interactions of receptor tyrosine kinases (RTKs) and estrogen receptor-alpha (ERα) signaling. We determined the genomic and nongenomic effects of 17β-estradiol (E(2)) on IGF-IR/MAPKp44/42 signaling and gene expression in human UtLM cells with intact or silenced IGF-IR. Analysis by RT(2) Profiler PCR-array showed genes involved in IGF-IR/MAPK signaling were upregulated in UtLM cells by E(2) including cyclin D kinases, MAPKs, and MAPK kinases; RTK signaling mediator, GRB2; transcriptional factors ELK1 and E2F1; CCNB2 involved in cell cycle progression, proliferation, and survival; and COL1A1 associated with collagen synthesis. Silencing (si)IGF-IR attenuated the above effects and resulted in upregulation of different genes, such as transcriptional factor ETS2; the tyrosine kinase receptor, EGFR; and DLK1 involved in fibrosis. E(2) rapidly activated IGF-IR/MAPKp44/42 signaling nongenomically and induced phosphorylation of ERα at ser118 in cells with a functional IGF-IR versus those without. E(2) also upregulated IGF-I gene and protein expression through a prolonged genomic event. These results suggest a pivotal role of IGF-IR and possibly other RTKs in mediating genomic and nongenomic hormone receptor interactions and signaling in fibroids and provide novel genes and targets for future intervention and prevention strategies.
Keyphrases