Mechanistic insights into C-C coupling in electrochemical CO reduction using gold superlattices.
Xiaoju YangChao RongLi ZhangZhenkun YeZhiming WeiChengdi HuangQiao ZhangQing YuanYueming ZhaiFu-Zhen XuanBingjun XuBowei ZhangXuan YangPublished in: Nature communications (2024)
Developing in situ/operando spectroscopic techniques with high sensitivity and reproducibility is of great importance for mechanistic investigations of surface-mediated electrochemical reactions. Herein, we report the fabrication of highly ordered rhombic gold nanocube superlattices (GNSs) as substrates for surface-enhanced infrared absorption spectroscopy (SEIRAS) with significantly enhanced SEIRA effect, which can be controlled by manipulating the randomness of GNSs. Finite difference time domain simulations reveal that the electromagnetic effect accounts for the significantly improved spectroscopic vibrations on the GNSs. In situ SEIRAS results show that the vibrations of CO on the Cu 2 O surfaces have been enhanced by 2.4 ± 0.5 and 18.0 ± 1.3 times using GNSs as substrates compared to those on traditional chemically deposited gold films in acidic and neutral electrolytes, respectively. Combined with isotopic labeling experiments, the reaction mechanisms for C-C coupling of CO electroreduction on Cu-based catalysts are revealed using the GNSs substrates.