Evaporation Dynamics of Macro- and Nanodroplets on Heated Hydrophilic Rough Substrates: The Effect of Roughness and Scale.
Zhuorui LiBin LiuYali GuoLisen BiHengxiang HuTao ZengRui LiPanagiotis E TheodorakisPublished in: Langmuir : the ACS journal of surfaces and colloids (2024)
Droplet evaporation on rough substrates plays an essential role in cooling and micro/nanoparticle assembly. Currently, there are numerous macroscopic experiments and theoretical models to investigate the droplet evaporation behavior on rough substrates. However, due to the complexity of this phenomenon, understanding its mechanisms solely through macroscale studies is difficult. To this end, molecular dynamics simulations of the models with distinct roughness factors are performed, and the obtained results are compared with those of relevant experiments of droplet evaporation on three hydrophilic substrates with different roughness average of 0.1, 0.15, and 0.2 μm, respectively. In this way, we assess the evaporation on these rough systems and the effect of scale on macro- and nanodroplets, which allows us to explore deeper the mechanism of droplet evaporation on rough hydrophilic substrates. In particular, we find that in the case of macroscale droplets, the evaporation mode remains the same with increasing roughness, pointing to a combined mixed and constant-contact-radius (CCR) mode. In the case of nanoscale droplets, the evaporation model is the constant-contact-angle mode when the roughness factor r = 1, while the mixed and CCR modes are found for r = 1.5 and 2, respectively. The scale effect has significant influence on the evaporation pattern of droplets on rough hydrophilic substrates. Moreover, it is also found that increasing the roughness of substrates expands the substrate-droplet contact area on both the macro- and nanoscale, which in turn enhances the heat transfer from the substrate toward the droplet. We anticipate that this first systematic analysis of scale effects provides further insights into the evaporation dynamics of droplets on rough hydrophilic substrates and has significant implications for the advancement of nanotechnology.