Login / Signup

Molecular beacon-templated silver nanoclusters as a fluorescent probe for determination of bleomycin via DNA scission.

Xiaolu YanJing SunXian-En ZhaoRenjun WangXiao WangYa-Nan ZuoWei LiuRongmei KongShuyun Zhu
Published in: Mikrochimica acta (2018)
The authors describe a molecular beacon-based fluorescent probe for the determination of the cancer drug bleomycin (BLM). The probe was tagged with DNA-templated silver nanoclusters (DNA-AgNCs) and guanine-rich sequences (GRSs) at two terminals serving as signal reporter with a loop. In the absence of the BLM-iron(II) complex [BLM-Fe(II)], the probe has a hairpin shape and displays strong fluorescence because the AgNCs are close to the GRSs. In the presence of the BLM-Fe(II) complex, it will selectively cleave the probe at the 5'-GC-3' scission site of the loop. This displaces the AgNCs away from the GRSs and causes a decrease in fluorescence, best measured at excitation/emission wavelengths of 565/623 nm. This effect enables BLM to be detected with a detection limit as low as 33 pM, which was 1-3 orders of magnitude more sensitive than most of the previous reports. The probe was applied for the determination of BLM in spiked human serum samples, and excellent performance was achieved. In our perception, the method described here represents a promising tool for highly sensitive and specific analysis of BLM during cancer treatment. Graphical abstract Schematic of a highly sensitive fluorometric assay forbleomycin. It is based on molecular beacon-templated silver nanoclusters and DNA scission.
Keyphrases