Login / Signup

Tunable In Situ Synthesis of Ultra-Thin Extracellular Matrix-Derived Membranes in Organ-on-a-Chip Devices.

Jeremy D NewtonYuetong SongSiwan ParkKayshani R KanagarajahAmy P WongEdmond W K Young
Published in: Advanced healthcare materials (2024)
Thin cell culture membranes in organ-on-a-chip (OOC) devices are used to model a wide range of thin tissues. While early and most current platforms use micro-porous or fibrous elastomeric or thermoplastic membranes, there is an emerging class of devices using extra-cellular matrix (ECM) protein-based membranes to improve their biological relevance. These ECM-based membranes present physiologically relevant properties, but they are difficult to integrate into OOC devices due to their relative fragility. Additionally, the specialized fabrication methods developed to date make comparison between methods difficult. This work presents the development and characterisation of a method to produce ultra-thin matrix-derived membranes (UMM) in OOC devices that requires only a pre-assembled thermoplastic device and a micropipette, decoupling the device and UMM fabrication processes. Control over the thickness and permeability of the UMM is demonstrated, along with integration of the UMM in a device enabling high-resolution on-chip microscopy. The reliability of the UMM fabrication method is leveraged to develop a medium-throughput well-plate format device with 32 independent UMM-integrated samples. Finally, proof-of-concept cell culture experiments are demonstrated. Due to its simplicity and controllability, the presented method has the potential to overcome technical barriers preventing wider adoption of physiologically relevant ECM-based membranes in OOC devices. This article is protected by copyright. All rights reserved.
Keyphrases