Highly Efficient OLEDs by Using a Brominated Thermally Activated Delayed Fluorescent Host due to Balanced Carrier Transport and Enhanced Exciton Upconversion.
Xiaocui MaJiwei ZhangHengyuan ZhangMing ZhangHui LinCai-Jun ZhengXiaoyang DuSi-Lu TaoPublished in: ACS applied materials & interfaces (2023)
Thermally activated delayed fluorescent (TADF) materials are naturally bipolar and can potentially serve as hosts. However, triplet excitons in TADF materials are long-lived and prone to unfavorable bimolecular processes. Implementing an efficient reverse system intersection (RISC) process is an effective solution. Moreover, although the general TADF host is bipolar, polarity differences still cause a mobility imbalance. In this work, we designed and synthesized a novel TADF host material, 11-(3-(4-(3-bromophenyl)-6-phenyl-1,3,5-triazin-2-yl)phenyl)-12,12-dimethyl-11,12-dihydroindeno[2,1- a ]carbazole (Br-DMIC-TRZ). The upconversion of the TADF host and its doped films is facilitated due to enhanced spin-orbit coupling (SOC) induced by bromine, which exhibits a higher rate of RISC. This progress facilitates the involvement of more triplet excitons in luminescence. Meanwhile, the attachment of bromine to the acceptor fragment of TADF enhances the electron mobility, where hole mobility and electron mobility are more comparable. Enhanced exciton upconversion and balanced carrier transport allow devices formed based on brominated TADF hosts to outperform other hosts. The Br-TADF-based devices with three dopants sensitized achieved improvements of 29.8, 21.4, and 24.4% compared to the DMIC-TRZ-based device. This work provides a feasible molecular design strategy for further developing efficient hosts.