Login / Signup

Urinary and Serum Metabolomics Analyses Uncover That Total Glucosides of Paeony Protect Liver against Acute Injury Potentially via Reprogramming of Multiple Metabolic Pathways.

Haojie LiWenli CaoMengxi LuChunxiao WuXinguo WangLiying Niu
Published in: Evidence-based complementary and alternative medicine : eCAM (2017)
Total glucosides of paeony (TGP) have been confirmed to be hepatoprotective. However, the underlying mechanism is largely unclear. In this study, we investigated the metabolic profiles of urine and serum in rats with carbon tetrachloride- (CCl4-) induced experimental liver injury and TGP administration by using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The vehicle or a single dose of TGP was intragastrically administered to Wistar rats once a day for 14 consecutive days. To induce ALI, 50% CCl4 was injected intraperitoneally into these rats 2 hours after the last time administration of saline of TGP at the 14th day. The results indicated that TGP administration could protect rats from CCl4-induced ALI and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation, as well as hepatocyte apoptosis and inflammation. Furthermore, metabolomics analysis showed that TGP treatment significantly attenuated CCl4-triggered deregulation of multiple metabolites in both urine and serum, including glycine, alanine, proline, and glutamine. Metabolite set enrichment and pathway analyses demonstrated that amino acid cycling and glutathione metabolism were two main pathways involved in CCl4-induced experimental liver injury and TGP administration. Taken together, these findings revealed that regulation of metabolites potentially plays a pivotal role in the protective effect of TGP on ALI.
Keyphrases