Login / Signup

Molecular and in vivo studies of a glutamate-class prolyl-endopeptidase for coeliac disease therapy.

Laura Del Amo-MaestroSoraia R MendesArturo Rodríguez-BanqueriLaura Garzon-FloresMarina GirbalMaría J Rodríguez LagunasTibisay GuevaraÀngels FranchFrancisco J Pérez-CanoUlrich EckhardFrancesc Xavier Gomis-Rüth
Published in: Nature communications (2022)
The digestion of gluten generates toxic peptides, among which a highly immunogenic proline-rich 33-mer from wheat α-gliadin, that trigger coeliac disease. Neprosin from the pitcher plant is a reported prolyl endopeptidase. Here, we produce recombinant neprosin and its mutants, and find that full-length neprosin is a zymogen, which is self-activated at gastric pH by the release of an all-β pro-domain via a pH-switch mechanism featuring a lysine plug. The catalytic domain is an atypical 7+8-stranded β-sandwich with an extended active-site cleft containing an unprecedented pair of catalytic glutamates. Neprosin efficiently degrades both gliadin and the 33-mer in vitro under gastric conditions and is reversibly inactivated at pH > 5. Moreover, co-administration of gliadin and the neprosin zymogen at the ratio 500:1 reduces the abundance of the 33-mer in the small intestine of mice by up to 90%. Neprosin therefore founds a family of eukaryotic glutamate endopeptidases that fulfils requisites for a therapeutic glutenase.
Keyphrases
  • celiac disease
  • stem cells
  • skeletal muscle
  • metabolic syndrome
  • high fat diet induced
  • anti inflammatory
  • smoking cessation
  • wastewater treatment
  • cell free
  • case control