Login / Signup

Ultrahigh Resolution Pixelated Top-Emitting Quantum-Dot Light-Emitting Diodes Enabled by Color-Converting Cavities.

Lianna ChenZhiyuan QinShuming Chen
Published in: Small methods (2021)
Realizing pixelated quantum-dot light-emitting diodes for high-resolution displays remains a challenging task because of the difficulty of fine patterning the quantum-dots. In this study, instead of patterning the quantum-dots, the color-converting cavities for realizing high-resolution pixelated emission are developed. By defining the thicknesses of the transparent electrodes (phase tuning layers) through a photolithographic process, the resultant cavities can selectively convert the unpatterned quantum-dot white emission as saturated red, green, and blue emission with a brightness of 22170, 51930, and 3064 cd m -2 at 5.5 V, respectively. The developed method enables the realization of ultrahigh density red, green, and blue emission for a display with a resolution of ≈1700 pixel-per-inch and a color gamut of 111% National Television System Committee; together with the advantages of quantum-dot patterning-free, color-filter-free and high brightness, the demonstrated architecture could find potential applications in various displays ranging from cell phone to emerging virtual reality and augmented reality displays.
Keyphrases