Login / Signup

Abiotic and Biological Degradation of Atmospheric Proteinaceous Matter Can Contribute Significantly to Dissolved Amino Acids in Wet Deposition.

Yu XuHuayun XiaoDaishe WuChaojun Long
Published in: Environmental science & technology (2020)
Atmospheric proteinaceous matter is characterized by ubiquity and potential bioavailability. However, little is known about the origins, secondary production processes, and biogeochemical role of proteinaceous matter in wet deposition. Precipitation samples were collected in suburban Guiyang (southwestern China) over a 1 year period to investigate their chemical components, mainly including dissolved combined amino acids (DCAAs), dissolved free AAs (DFAAs), and nonleachable particulate AAs (PAAs). Glycine was most abundant in the DFAAs, while the dominant species in DCAAs and PAAs was glutamic acid (including deaminated glutamine). The total DCAA, DFAA, and PAA concentrations peaked on average in spring (min. in summer). On average, the contribution of DCAA-nitrogen (median of 3.44%) to dissolved organic nitrogen was 5-fold higher than that of DFAA-nitrogen (median of 0.60%). Correlation analyses of AAs with ozone, nitrogen dioxide, and the quantitative degradation index suggest that DC(/F)AAs are linked with both abiotic and biological degradation of proteinaceous matter. Moreover, the high FAA scavenging ratios indicate the presence of postdepositional degradation of atmospheric proteinaceous matter. Further, the positive matrix factorization results suggest that the degradation of atmospheric proteinaceous matter markedly contributes to DCAAs and DFAAs in precipitation. Overall, the results suggest that the secondary processes involved in the degradation of atmospheric proteinaceous matter significantly promote direct bioavailability of AA-nitrogen.
Keyphrases
  • particulate matter
  • organic matter
  • amino acid
  • air pollution
  • high resolution
  • nitric oxide
  • climate change
  • dendritic cells
  • transcription factor
  • genetic diversity
  • genome wide identification