Comprehensive analysis of benzothiazoles (BTHs), benzotriazoles (BTRs), and benzotriazole ultraviolet absorbers (BUVs) in the western South China Sea: Spatial distributions, migration tendencies and ecotoxicological relevance.
Ming-Liang ZhaoJie FuXuan JiJing ZhangZhen HeGui-Peng YangPublished in: Water research (2024)
Benzothiazoles (BTHs), benzotriazoles (BTRs), and benzotriazole ultraviolet absorbers (BUVs) have garnered significant attention owing to their persistent nature in the environment and adverse impacts on aquatic organisms. However, there remains a dearth of investigations and studies conducted in tropical marine environments. In this study, we undertook the inaugural distributional survey and ecotoxicological relevance of BTHs, BTRs, and BUVs in seawater and sediments of the western South China Sea (WSCS). Elevated concentrations of BTHs, BTRs, and BUVs in the seawater and suspended particulate matter (SPM) were primarily observed in the Pearl River Estuary (PRE) and the western region of the WSCS, attributed to terrestrial runoff and hydrodynamic processes. Moreover, the transport of these compounds at the seawater-SPM interface was influenced by both the intrinsic properties of the contaminants and temperature variations. Spatially, concentrations of BTHs, BTRs, and BUVs in surface sediments exhibited a diminishing trend with increasing distance from the coast to offshore areas, reflecting notable anthropogenic impacts. Concentration profiles of these compounds in sediment cores displayed a bottom-up increasing trend, with total organic carbon (TOC) identified as the primary determinant governing their accumulation within sediment cores in the WSCS. Terrestrial runoff inputs and atmospheric deposition as major contributors to the occurrence of BTHs, BTRs, and BUVs in the WSCS. Simultaneously, the study underscores the non-negligible moderate mixture risk quotient associated with BTHs, BTRs, and BUVs in the sediments.