Login / Signup

Resveratrol Can Be Stable in a Medium Containing Fetal Bovine Serum with Pyruvate but Shortens the Lifespan of Human Fibroblastic Hs68 Cells.

Yuan-Jhe ChangYa-Chun ChangRosa Huang LiuChia-Wen ChenInn LeeNae-Cherng Yang
Published in: Oxidative medicine and cellular longevity (2018)
This study is aimed at developing a method that can inhibit resveratrol (Res) degradation in Dulbecco's modified Eagle medium (DMEM) and at evaluating the effects of Res on the replicative lifespan of Hs68 cells. We hypothesized that Res can extend the lifespan of Hs68 cells if we can inhibit the oxidative degradation of Res in the medium. We found that the addition of ≥5 U/mL SOD to the medium could completely inhibit Res degradation in DMEM. Fetal bovine serum (FBS) contained 29.3 ± 1.1 U/mL of SOD activity. FBS could prevent Res degradation in the medium through SOD activity and Res-FBS interaction, but the regular FBS concentration (i.e., 10% FBS) exhibited an insufficient ability to completely inhibit Res degradation. We found that pyruvate (1 mM) could potentiate SOD to scavenge superoxide at approximately 2.2-fold. Thus, 10% FBS combined with pyruvate (1 mM) could completely inhibit Res degradation. When Res was not degraded, it still shortened the lifespan of Hs68 cells. Overall, the proposed method involving 10% FBS combined with pyruvate (1 mM) could completely prevent Res degradation. However, in contrast to our hypothesis, Res could induce the shortening of the lifespan of Hs68 cells. The stability of Res analogs (i.e., oxy-Res and acetyl-Res) in the medium and their effects on the lifespan of Hs68 cells were also investigated.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • endoplasmic reticulum stress
  • signaling pathway
  • cell death
  • oxidative stress
  • nitric oxide
  • endothelial cells
  • pi k akt
  • amyotrophic lateral sclerosis
  • single molecule