Preparation and Optical Study of 1-Formamido-5-Isocyanonaphthalene, the Hydrolysis Product of the Potent Antifungal 1,5-Diisocyanonaphthalene.
Erika KopcsikZoltán MucsiBence KontraLászló VanyorekCsaba VáradiBéla ViskolczMiklós NagyPublished in: International journal of molecular sciences (2023)
Aromatic isocyanides have gained a lot of attention lately as promising antifungal and anticancer drugs, as well as high-performance fluorescent analytical probes for the detection of toxic metals, such as mercury, even in vivo. Since this topic is relatively new and aromatic isocyanides possess unique photophysical properties, the understanding of structure-behavior relationships and the preparation of novel potentially biologically active derivatives are of paramount importance. Here, we report the photophysical characterization of 1,5-diisocyanonaphthalene (DIN) backed by quantum chemical calculations. It was discovered that DIN undergoes hydrolysis in certain solvents in the presence of oxonium ions. By the careful control of the reaction conditions for the first time, the nonsymmetric product 1-formamido-5-isocyanonaphthalene (ICNF) could be prepared. Contrary to expectations, the monoformamido derivative showed a significant solvatochromic behavior with a ~50 nm range from hexane to water. This behavior was explained by the enhanced H-bond-forming ability of the formamide group. The significance of the hydrolysis reaction is that the isocyano group is converted to formamide in living organisms. Therefore, ICNF could be a potential drug (for example, antifungal) and the reaction can be used as a model for the preparation of other nonsymmetric formamido-isocyanoarenes. In contrast to its relative 1-amino-5-iscyanonaphthalene (ICAN), ICNF is highly fluorescent in water, enabling the development of a fluorescent turnoff probe.
Keyphrases
- living cells
- quantum dots
- candida albicans
- fluorescent probe
- label free
- molecularly imprinted
- anaerobic digestion
- molecular dynamics
- single molecule
- energy transfer
- electron transfer
- human health
- amino acid
- photodynamic therapy
- magnetic resonance
- working memory
- anti inflammatory
- contrast enhanced
- health risk
- fluorescence imaging
- loop mediated isothermal amplification
- oxide nanoparticles