Analysis of bone formation and membrane resorption in guided bone regeneration using deproteinized bovine bone mineral versus calcium sulfate.
Alessandro GavazzoniLiogi Iwaki FilhoLuzmarina HernandesPublished in: Journal of materials science. Materials in medicine (2018)
Guided Bone Regeneration (GBR) is a technique based on the use of a physical barrier that isolates the region of bone regeneration from adjacent tissues. The objective of this study was to compare GBR, adopting a critical-size defect model in rat calvaria and using collagen membrane separately combined with two filling materials, each having different resorption rates. A circular defect 8 mm in diameter was made in the calvaria of Wistar rats. The defects were then filled with calcium sulfate (CaS group) or deproteinized bovine bone mineral (DBBM group) and covered by resorbable collagen membrane. The animals were killed 15, 30, 45 and 60 days after the surgical procedure. Samples were collected, fixed in 4% paraformaldehyde and processed for paraffin embedding. The resultant sections were stained with H&E for histological and histomorphometric study. For the histomorphometric study, the area of membrane was quantified along with the amount of bone formed in the region of the membrane. Calcium sulfate was reabsorbed more rapidly compared to DBBM. The CaS group had the highest percentages of remaining membrane at 15, 30, 45 and 60 days, compared to the DBBM group. The DBBM group had the highest amount of new bone at 45 and 60 days compared to the CaS group. Based on these results, it was concluded that the type of filling material may influence both the resorption of collagen membrane and amount of bone formed.