Login / Signup

Metaheuristics-Based Optimization of a Robust GAPID Adaptive Control Applied to a DC Motor-Driven Rotating Beam with Variable Load.

Fábio Galvão BorgesMárcio GuerreiroPaulo Eduardo Sampaio MonteiroFrederic Conrad JanzenFernanda Cristina CorrêaSergio Luiz StevanHugo Valadares SiqueiraMauricio Dos Santos Kaster
Published in: Sensors (Basel, Switzerland) (2022)
This work aims to analyze two metaheuristics optimization techniques, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), with six variations each, and compare them regarding their convergence, quality, and dispersion of solutions. The optimization target is the Gaussian Adaptive PID control (GAPID) to find the best parameters to achieve enhanced performance and robustness to load variations related to the traditional PID. The adaptive rule of GAPID is based on a Gaussian function that has as adjustment parameters its concavity and the lower and upper bound of the gains. It is a smooth function with smooth derivatives. As a result, it helps avoid problems related to abrupt increases transition, commonly found in other adaptive methods. Because there is no mathematical methodology to set these parameters, this work used bio-inspired optimization algorithms. The test plant is a DC motor with a beam with a variable load. Results obtained by load and gain sweep tests prove the GAPID presents fast responses with very low overshoot and good robustness to load changes, with minimal variations, which is impossible to achieve when using the linear PID.
Keyphrases
  • machine learning
  • dendritic cells
  • mental health
  • pet ct
  • gene expression
  • immune response
  • genome wide
  • dna methylation
  • quality improvement
  • neural network