Login / Signup

The role of silver nanoparticles biosynthesized by Anabaena variabilis and Spirulina platensis cyanobacteria for malachite green removal from wastewater.

Gehan Ahmed IsmailNanis G AllamWalaa M El-GemizyMohamed A Salem
Published in: Environmental technology (2020)
In this study, biosynthesis of silver nanoparticles (AgNPs) using two species of cyanobacteria, Anabaena variabilis (Kütz) and Spirulina platensis (Gomont) was investigated and evaluated for dye removing capacity. The formation of AgNPs was detected by the change in colour using UV-Vis spectroscopy and further characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The obtained AgNPs were spherical to oval with average particle size of 17.9 and 26.4 nm for S. platensis and A. variabilis, respectively. These AgNPs were applied as bio-sorbent for the removal of malachite green (MG) dye released into wastewater. Within the tested initial concentration range of MG, the reaction exhibited first order kinetics model as monitored via UV spectroscopy. As the dye concentration decreased, the removal efficiency increased to reach 93% for S. platensis and 82% for A. variabilis AgNPs. The results also indicated that increased AgNPs concentration enhanced the MG removal with an efficiency up to 88% and 81% for S. platensis and A. variabilis AgNPs, respectively. The smaller particle diameter and larger specific surface area of S. platensis AgNPs enabled boosted catalytic activity for dye removal than those of A. variabilis. After the treatment with AgNPs, the resultant dye- AgNPs-free effluent proved non-toxic to Triticum aestivum L (Giza 171) seedlings, implying their safety for cultivation practices.
Keyphrases