Time-resolved control of nanoparticle integration in titanium-organic frameworks for enhanced catalytic performance.
Carmen Fernández-CondeYongkun ZhengMarta MonAntonio RiberaAntonio Leyva PérezCarlos Martí-GastaldoPublished in: Chemical science (2023)
Among the multiple applications of metal-organic frameworks (MOFs), their use as a porous platform for the support of metallic nanoparticles stands out for the possibility of integrating a good anchorage, that improves the stability of the catalyst, with the presence of a porous network that allows the diffusion of substrates and products. Here we introduce an alternative way to control the injection of Au nanoparticles at variable stages of nucleation of a titanium(iv) MOF crystal (MUV-10). This allows the analysis of the different modes of nanoparticle integration into the porous matrix as a function of the crystal formation stage and their correlation with the catalytic performance of the resulting composite. Our results reveal a direct effect of the stage at which the Au nanoparticles are integrated into MUV-10 crystals not only on their catalytic activity for the cyclotrimerization of propargyl esters and the hydrochlorination of alkynes, but also on the selectivity and recyclability of the final solid catalyst, which are far superior than those reported for the same reactions with TiO 2 supports.