Login / Signup

Rapid Quantification of Pharmaceuticals via 1 H Solid-State NMR Spectroscopy.

Y T Angel WongRuud L E G AspersMarketta Uusi-PenttiläArno P M Kentgens
Published in: Analytical chemistry (2022)
The physicochemical properties of active pharmaceutical ingredients (APIs) can depend on their solid-state forms. Therefore, characterization of API forms is crucial for upholding the performance of pharmaceutical products. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful technique for API quantification due to its selectivity. However, quantitative SSNMR experiments can be time consuming, sometimes requiring days to perform. Sensitivity can be considerably improved using 1 H SSNMR spectroscopy. Nonetheless, quantification via 1 H can be a challenging task due to low spectral resolution. Here, we offer a novel 1 H SSNMR method for rapid API quantification, termed CRAMPS-MAR. The technique is based on combined rotation and multiple-pulse spectroscopy (CRAMPS) and mixture analysis using references (MAR). CRAMPS-MAR can provide high 1 H spectral resolution with standard equipment, and data analysis can be accomplished with ease, even for structurally complex APIs. Using several API species as model systems, we show that CRAMPS-MAR can provide a lower quantitation limit than standard approaches such as fast MAS with peak integration. Furthermore, CRAMPS-MAR was found to be robust for cases that are inapproachable by conventional ultra-fast (i.e., 100 kHz) MAS methods even when state-of-the-art SSNMR equipment was employed. Our results demonstrate CRAMPS-MAR as an alternative quantification technique that can generate new opportunities for analytical research.
Keyphrases