Login / Signup

A potential peptide inhibitor of SARS-CoV-2 S and human ACE2 complex.

Grijesh JaiswalShivani YaduvanshiVeerendra Kumar
Published in: Journal of biomolecular structure & dynamics (2021)
The disease COVID-19 has caused heavy socio-economic burden and there is immediate need to control it. The disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The viral entry into human cell depends on the attachment of spike (S) protein via its receptor binding domain (RBD) to human cell receptor angiotensin-converting enzyme 2 (hACE2). Thus, blocking the virus attachment to hACE2 could serve as potential therapeutics for viral infection. We have designed a peptide inhibitor (ΔABP-α2) targeting the RBD of S protein using in-silico approach. Docking studies and computed affinities suggested that peptide inhibitor binds at the RBD with ∼95-fold higher affinity than hACE2. Molecular dynamics (MD) simulation confirms the stable binding of inhibitor to hACE2. Immunoinformatics studies suggest non-immunogenic and non-toxic nature of peptide. Thus, the proposed peptide could serve as potential blocker for viral attachment.Communicated by Ramaswamy H. Sarma.
Keyphrases