Characterization of Anti-Inflammatory and Antioxidant Constituents from Scutellaria baicalensis Using LC-MS Coupled with a Bioassay Method.
Yoo Kyong HanHyun Woo KimHyeji ShinJiyeon SongMi Kyeong LeeByoungduck ParkKi Yong LeePublished in: Molecules (Basel, Switzerland) (2020)
An effective and previously demonstrated screening method for active constituents in natural products using LC-MS coupled with a bioassay was reported in our earlier studies. With this, the current investigation attempted to identify bioactive constituents of Scutellaria baicalensis through LC-MS coupled with a bioassay. Peaks at broadly 17-20 and 24-25 min on the MS chromatogram displayed an inhibitory effect on NO production in lipopolysaccharide-induced BV2 microglia cells. Similarly, peaks at roughly 17-19 and 22 min showed antioxidant activity with an 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)/2,2-diphenyl-1- picrylhydrazyl (DPPH) assay. For confirmation of LC-MS coupled with a bioassay, nine compounds (1-9) were isolated from an MeOH extract of S. baicalensis. As we predicted, compounds 1, 8, and 9 significantly reduced lipopolysaccharide (LPS)-induced NO production in BV2 cells. Likewise, compounds 5, 6, and 8 exhibited free radical-scavenging activities with the ABTS/DPPH assay. In addition, the structural similarity of the main components was confirmed by analyzing the total extract and EtOAc fractions through molecular networking. Overall, the results suggest that the method comprised of LC-MS coupled with a bioassay can effectively predict active compounds without an isolation process, and the results of molecular networking predicted that other components around the active compound node may also be active.