Login / Signup

Performance of Semilocal Kinetic Energy Functionals for Orbital-Free Density Functional Theory.

Lucian A ConstantinEduardo FabianoFabio Della Sala
Published in: Journal of chemical theory and computation (2019)
We assess several generalized gradient approximations (GGAs) and Laplacian-level meta-GGAs (LL-MGGA) kinetic energy (KE) functionals for orbital-free density functional theory calculations of bulk metals and semiconductors, considering equilibrium distances, bulk moduli, total and kinetic energies, and the electron densities. We also considered the effects of the pseudopotentials, the vacancy formation energies, and the bond lengths of molecular dimers. We found that LL-MGGA KE functionals are distinctively superior to GGA functionals, showing the importance of the Laplacian of the density in the functional construction. We extended the recently developed Pauli-Gaussian second-order and Laplacian (PGSL) functional ( J. Phys. Chem. Lett. 2018 , 9 , 4385 , DOI: 10.1021/acs.jpclett.8b01926 ) including high-order corrections, achieving higher transferability and accuracy than conventional nonlocal functionals based on the Lindhard response function.
Keyphrases
  • density functional theory
  • molecular dynamics
  • acute coronary syndrome