Login / Signup

One Step Closer to an Ideal Insensitive Energetic Molecule: 3,5-Diamino-6-hydroxy-2-oxide-4-nitropyrimidone and its Derivatives.

Jichuan ZhangYongan FengYiyang BoRichard J StaplesJiaheng ZhangJean'ne M Shreeve
Published in: Journal of the American Chemical Society (2021)
Reaching the goal of developing an insensitive high-energy molecule (IHEM) is a major challenge. In this study, 3,5-diamino-6-hydroxy-2-oxide-4-nitropyrimidone (IHEM-1) was synthesized in one step from 2,4,6-triamino-5-nitropyrimidine-1,3-dioxide hydrate (ICM-102 hydrate). The density of compound IHEM-1 is 1.95 g cm-3 with a decomposition temperature of 271 °C. Its detonation velocity and pressure are 8660 m s-1 and 33.64 GPa, respectively, which are far superior to the detonation performance of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), while its sensitivity is identical with that of TATB. In addition, four derivatives (1a, chloride; 1b, nitrate; 1c, perchlorate; and 1d, dinitramide) were prepared on the basis of the weak base site (N-O group) and show excellent energetic properties. By combining a series of advantages, including simple preparation, high yield, high density, very low solubility in aqueous solution, high thermostability, insensitivity, and excellent detonation performance, IHEM-1 approaches an ideal insensitive high-energy molecule. Compounds 1b-1d are also competitive as new high-energy-density materials.
Keyphrases
  • high density
  • aqueous solution
  • nitric oxide
  • structure activity relationship
  • drinking water
  • molecularly imprinted