Infrared harmonic features of collagen models at B3LYP-D3: From amide bands to the THz region.
Michele CutiniPiero UgliengoPublished in: The Journal of chemical physics (2021)
In this paper, we have studied the vibrational spectral features for the collagen triple helix using a dispersion corrected hybrid density functional theory (DFT-D) approach. The protein is simulated by an infinite extended polymer both in the gas phase and in a water micro-solvated environment. We have adopted proline-rich collagen models in line with the high content of proline in natural collagens. Our scaled harmonic vibrational spectra are in very good agreement with the experiments and allow for the peak assignment of the collagen amide I and III bands, supporting or questioning the experimental interpretation by means of vibrational normal modes analysis. Furthermore, we demonstrated that IR spectroscopy in the THz region can detect the small variations inherent to the triple helix helicity (10/3 over 7/2), thus elucidating the packing state of the collagen. So far, identifying the collagen helicity is only possible by means of crystal x-ray diffraction.