Login / Signup

In vitro and in silico anticancer activity of amygdalin on the SK-BR-3 human breast cancer cell line.

Bahman MoradipoodehMostafa JamalanMajid ZeinaliMasood FereidoonnezhadGhorban Mohammadzadeh
Published in: Molecular biology reports (2019)
In spite of several studies that have shown the cytotoxic effects of amygdalin on the different cancer cell lines, however, the chemopreventive potential of amygdalin on the breast cancer cell line is not completely understood. We investigated the effect of amygdalin on the cell death and the level of pro-apoptotic Bax protein and anti-apoptotic Bcl-2 protein in SK-BR-3 human breast cancer cell line. The cell viability of SK-BR-3 cells was evaluated by MTT assay in different concentration of amygdalin. The level of Bax and Bcl-2 in SK-BR-3 cells were measured by western blot analysis. For statistical analysis, One-way ANOVA was used for the comparison of Bax and Bcl-2 protein level and percent of cell viability between groups. The molecular docking studies of amygdalin within the Bcl-2 (PDB ID: 4LVT) and HER2 (PDB ID: 3RCD) active site, were performed using AutoDock 4.2.5. Amygdalin induced a significant reduction of cell viability in SK-BR-3 after 24-h treatment in a dose-dependent manner. Also, amygdalin causes an increase in pro-apoptotic Bax protein and a decrease in anti-apoptotic Bcl-2 protein expression in the SK-BR-3 cells. Molecular docking studies showed that amygdalin interacts with the active site amino acids of Bcl-2 and HER2 through hydrogen bonding and some hydrophobic interactions. Amygdalin can induce apoptotic death in SK-BR-3 cells by increasing pro-apoptotic Bax protein and decreasing anti-apoptotic Bcl-2 protein expression. The results suggest that amygdalin may be a valuable candidate for the treatment of breast cancer, especially in HER2 positive cells.
Keyphrases