Exchange-bias quantum tunnelling in a CO2-based Dy4-single molecule magnet.
Eufemio Moreno PinedaYanhua LanOlaf FuhrWolfgang WernsdorferManfred M KappesPublished in: Chemical science (2016)
Carbamate formation in green-plants through the RuBisCO enzyme continuously plays a pivotal role in the conversion of CO2 from the atmosphere into biomass. With this in mind, carbamate formation from CO2 by a lanthanide source in the presence of a secondary amine is herein explored leading to a lanthanide-carbamate cage with the formula [Dy4(O2CNiPr2)12]. Magnetic studies show slow relaxation leading to the observation of hysteresis loops; the tetranuclear cage being a single molecule magnet. Detailed interpretation of the data reveals: (i) the presence of two different exchange interactions, ferromagnetic and antiferromagnetic and (ii) the observation of exchange-bias quantum tunnelling with two distinct sets of loops, attributable to ferromagnetic interactions between dysprosium ions at longer distances and antiferromagnetic exchange between dysprosium ions at shorter distances. The results clearly demonstrate that the [Dy4(O2CNiPr2)12] cage acts as a quantum magnet which in turn could be at the heart of hybrid spintronic devices after having implemented CO2 as a feedstock.
Keyphrases
- single molecule
- living cells
- molecular dynamics
- atomic force microscopy
- quantum dots
- energy transfer
- room temperature
- heart failure
- electronic health record
- wastewater treatment
- mass spectrometry
- monte carlo
- big data
- atrial fibrillation
- aqueous solution
- water soluble
- fluorescent probe
- preterm infants
- case control
- anaerobic digestion