Degradation and Bone-Contact Biocompatibility of Two Drillable Magnesium Phosphate Bone Cements in an In Vivo Rabbit Bone Defect Model.
Andrea EwaldAndreas FuchsLasse BoegeleinJan-Peter GrunzKarl KneistUwe GbureckStefanie Hoelscher-DohtPublished in: Materials (Basel, Switzerland) (2023)
The use of bone-cement-enforced osteosynthesis is a growing topic in trauma surgery. In this context, drillability is a desirable feature for cements that can improve fracture stability, which most of the available cement systems lack. Therefore, in this study, we evaluated a resorbable and drillable magnesium-phosphate (MgP)-based cement paste considering degradation behavior and biocompatibility in vivo. Two different magnesium-phosphate-based cement (MPC) pastes with different amounts of phytic acid (IP 6) as setting retarder (MPC 22.5 and MPC 25) were implanted in an orthotopic defect model of the lateral femoral condyle of New Zealand white rabbits for 6 weeks. After explantation, their resorption behavior and material characteristics were evaluated by means of X-ray diffraction (XRD), porosimetry measurement, histological staining, peripheral quantitative computed tomography (pQCT), cone-beam computed tomography (CBCT) and biomechanical load-to-failure tests. Both cement pastes displayed comparable results in mechanical strength and resorption kinetics. Bone-contact biocompatibility was excellent without any signs of inflammation. Initial resorption and bone remodeling could be observed. MPC pastes with IP 6 as setting retardant have the potential to be a valuable alternative in distinct fracture patterns. Drillability, promising resorption potential and high mechanical strength confirm their suitability for use in clinical routine.
Keyphrases
- bone loss
- bone mineral density
- computed tomography
- soft tissue
- bone regeneration
- cone beam computed tomography
- postmenopausal women
- high resolution
- oxidative stress
- magnetic resonance imaging
- body composition
- positron emission tomography
- coronary artery bypass
- contrast enhanced
- clinical practice
- risk assessment
- acute coronary syndrome
- human health
- magnetic resonance
- liquid chromatography
- tandem mass spectrometry
- aqueous solution