Login / Signup

Multi-Layer Perceptron Classifier with the Proposed Combined Feature Vector of 3D CNN Features and Lung Radiomics Features for COPD Stage Classification.

Yingjian YangNanrong ZengZiran ChenWei LiYingwei GuoShicong WangWenxin DuanYang LiuRongchang ChenYan Kang
Published in: Journal of healthcare engineering (2023)
Computed tomography (CT) has been regarded as the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Therefore, chest CT images should provide more information for COPD diagnosis, such as COPD stage classification. This paper proposes a features combination strategy by concatenating three-dimension (3D) CNN features and lung radiomics features for COPD stage classification based on the multi-layer perceptron (MLP) classifier. First, 465 sets of chest HRCT images are automatically segmented by a trained ResU-Net, obtaining the lung images with the Hounsfield unit. Second, the 3D CNN features are extracted from the lung region images based on a truncated transfer learning strategy. Then, the lung radiomics features are extracted from the lung region images by PyRadiomics. Third, the MLP classifier with the best classification performance is determined by the 3D CNN features and the lung radiomics features. Finally, the proposed combined feature vector is used to improve the MLP classifier's performance. The results show that compared with CNN models and other ML classifiers, the MLP classifier with the best classification performance is determined. The MLP classifier with the proposed combined feature vector has achieved accuracy, mean precision, mean recall, mean F 1-score, and AUC of 0.879, 0.879, 0.879, 0.875, and 0.971, respectively. Compared to the MLP classifier with the 3D CNN features selected by Lasso, our method based on the MLP classifier has improved the classification performance by 5.8% (accuracy), 5.3% (mean precision), 5.8% (mean recall), 5.4% (mean F 1-score), and 2.5% (AUC). Compared to the MLP classifier with lung radiomics features selected by Lasso, our method based on the MLP classifier has improved the classification performance by 5.0% (accuracy), 5.1% (mean precision), 5.0% (mean recall), 5.1% (mean F 1-score), and 2.1% (AUC). Therefore, it is concluded that our method is effective in improving the classification performance for COPD stage classification.
Keyphrases