Login / Signup

Electrospun PCL/gelatin/arbutin nanofiber membranes as potent reactive oxygen species scavengers to accelerate cutaneous wound healing.

Mindong DuShuhan LiuNihan LanRuiming LiangShengde LiangMaoqiang LanDisen FengLi ZhengQingjun WeiKe Ma
Published in: Regenerative biomaterials (2024)
The presence of excessive reactive oxygen species (ROS) at a skin wound site is an important factor affecting wound healing. ROS scavenging, which regulates the ROS microenvironment, is essential for wound healing. In this study, we used novel electrospun PCL/gelatin/arbutin (PCL/G/A) nanofibrous membranes as wound dressings, with PCL/gelatin (PCL/G) as the backbone, and plant-derived arbutin (hydroquinone-β-d-glucopyranoside, ARB) as an effective antioxidant that scavenges ROS and inhibits bacterial infection in wounds. The loading of ARB increased the mechanical strength of the nanofibres, with a water vapour transmission rate of more than 2500 g/(m 2  × 24 h), and the water contact angle decreased, indicating that hydrophilicity and air permeability were significantly improved. Drug release and degradation experiments showed that the nanofibre membrane controlled the drug release and exhibited favourable degradability. Haemolysis experiments showed that the PCL/G/A nanofibre membranes were biocompatible, and DPPH and ABTS+ radical scavenging experiments indicated that PCL/G/A could effectively scavenge ROS to reflect the antioxidant activity. In addition, haemostasis experiments showed that PCL/G/A had good haemostatic effects in vitro and in vivo. In vivo animal wound closure and histological staining experiments demonstrated that PCL/G/A increased collagen deposition and remodelled epithelial tissue regeneration while showing good in vivo biocompatibility and non-toxicity. In conclusion, we successfully prepared a multifunctional wound dressing, PCL/G/A, for skin wound healing and investigated its potential role in wound healing, which is beneficial for the clinical translational application of phytomedicines.
Keyphrases
  • wound healing
  • reactive oxygen species
  • drug release
  • drug delivery
  • dna damage
  • cell death
  • tissue engineering
  • stem cells
  • oxidative stress
  • high resolution
  • physical activity
  • body mass index