Hydraulic performance and fouling characteristics of a membrane sequencing batch reactor (MSBR) for landfill leachate treatment under various operating conditions.
Petros GkotsisJason TsilogeorgisAnastasios I ZouboulisPublished in: Environmental science and pollution research international (2017)
This study investigates the hydraulic performance and the fouling characteristics of a bench-scale membrane sequencing batch reactor (MSBR), treating mature landfill leachate under various time-based operating conditions. The MSBR system operated initially under a high-flux condition (Period 1) which resulted in a rapid trans-membrane pressure (TMP) rise due to intense fouling. Following the characterization of Period 1 as super-critical, the system was subsequently operated under a near-critical condition (Period 2). The overall filtration resistance analysis showed that cake layer formation was the dominant fouling mechanism during Period 1, contributing to 85.5% of the total resistance. However, regarding the MSBR operation during Period 2, adsorption was found to also be a dominant fouling mechanism (Days 1 to 47), contributing to 29.1% of the total resistance. Additionally, the irregular total resistance variation, which was observed during the subsequent operation (Days 48 to 75), and the respective filtration resistance analysis suggested also the formation of an initial sludge cake layer on the membrane surface, contributing to the 47.7% of the total resistance.