A dynamic scale-mixture model of motion in natural scenes.
Jared M SalisburyStephanie E PalmerPublished in: bioRxiv : the preprint server for biology (2023)
Some of the most important tasks of visual and motor systems involve estimating the motion of objects and tracking them over time. Such systems evolved to meet the behavioral needs of the organism in its natural environment, and may therefore be adapted to the statistics of motion it is likely to encounter. By tracking the movement of individual points in videos of natural scenes, we begin to identify common properties of natural motion across scenes. As expected, objects in natural scenes move in a persistent fashion, with velocity correlations lasting hundreds of milliseconds. More subtly, we find that the observed velocity distributions are heavy-tailed and can be modeled as a Gaussian scale-mixture. Extending this model to the time domain leads to a dynamic scale-mixture model, consisting of a Gaussian process multiplied by a positive scalar quantity with its own independent dynamics. Dynamic scaling of velocity arises naturally as a consequence of changes in object distance from the observer, and may approximate the effects of changes in other parameters governing the motion in a given scene. This modeling and estimation framework has implications for the neurobiology of sensory and motor systems, which need to cope with these fluctuations in scale in order to represent motion efficiently and drive fast and accurate tracking behavior.
Keyphrases