Molecular mechanisms involved in the destabilization of two types of R3-R4 tau fibrils associated with chronic traumatic encephalopathy by Fisetin.
Jiaxing TangRuiqing SunJiaqian WanYu ZouQingwen ZhangPublished in: Physical chemistry chemical physics : PCCP (2024)
Chronic traumatic encephalopathy is a neurodegenerative tauopathy pathologically characterized by fibrillary tau aggregates in the depth of sulci. Clearing fibrous tau aggregates is considered a promising strategy in the treatment of CTE. Fisetin (FS), a natural polyphenolic small molecule, was confirmed to disassociate the tau filaments in vitro . However, the molecular mechanisms of FS in destabilizing the CTE-related R3-R4 tau fibrils remain largely unknown. In this study, we compared the atomic-level structural differences of the two types of CTE-related R3-R4 tau fibrils and explored the influence and molecular mechanisms of FS on the two types of fibrils by conducting multiple molecular dynamics (MD) simulations. The results reveal that the type 1 fibril displays higher structural stability than the type 2 fibril, with a lower root-mean-square-fluctuation value and higher β-sheet structure probability. FS can destabilize both types of fibrils by decreasing the β-sheet structure content, interrupting the mainchain H-bond network, and increasing the solvent accessible surface area and β7-β8 angle of the fibrils. H-bonding, π-π stacking and cation-π are the common interactions driving FS molecules binding on the two types of fibrils, while the hydrophobic interaction occurs only in the type 2 fibril. Due to the relatively short simulation time, our study captures the early molecular mechanisms. However, it does provide beneficial information for the design of drugs to prevent or treat CTE.