Login / Signup

Design and Validation of a Low-Level Controller for Hierarchically Controlled Exoskeletons.

Connor W HerronZachary J FugeMadeline KogelisNicholas J TremaroliBhaben KalitaAlexander Leonessa
Published in: Sensors (Basel, Switzerland) (2023)
In this work, a generalized low-level controller is presented for sensor collection, motor input, and networking with a high-level controller. In hierarchically controlled exoskeletal systems, which utilize series elastic actuators (SEAs), the hardware for sensor collection and motor command is separated from the computationally expensive high-level controller algorithm. The low-level controller is a hardware device that must collect sensor feedback, condition and filter the measurements, send actuator inputs, and network with the high-level controller at a real-time rate. This research outlines the hardware of two printed circuit board (PCB) designs for collecting and conditioning sensor feedback from two SEA subsystems and an inertial measurement unit (IMU). The SEAs have a joint and motor encoder, motor current, and force sensor feedback that can be measured using the proposed generalized low-level controller presented in this work. In addition, the high and low-level networking approach is discussed in detail, with a full breakdown of the data storage within a communication frame during the run-time operation. The challenges of device synchronization and updates rates of high and low-level controllers are also discussed. Further, the low-level controller was validated using a pendulum test bed, complete with full sensor feedback, including IMU results for two open-loop scenarios. Moreover, this work can be extended to other hierarchically controlled robotic systems that utilize SEA subsystems, such as humanoid robots, assistive rehabilitation robots, training simulators, and robotic-assisted surgical devices. The hardware and software designs presented in this work are available open source to enable researchers with a direct solution for data acquisition and the control of low-level devices in a robotic system.
Keyphrases
  • minimally invasive
  • machine learning
  • climate change
  • big data
  • transcription factor