Dye-functionalized Sol-gel Matrix on Carbon Nanotubes for Refreshable and Flexible Gas Sensors.
Jeongsu KimHaneul YooViet Anh Pham BaNarae ShinSeunghun HongPublished in: Scientific reports (2018)
We report a colorimetric dye-functionalized sol-gel matrix on carbon nanotubes for use as a refreshable and flexible gas sensor with humidity calibration. Here, we fabricated gas sensors by functionalizing dye molecules on the top of carbon nanotube networks via a sol-gel method. Using hybrid gas sensors with different dye molecules, we could selectively detect various hazardous gases, such as NH3, Cl2 and SO2 gases, via optical and electrical signals. The sensors exhibited rather large conductance changes of more than 50% following exposure to gas species with concentrations even under the permissible exposure limit. Significantly, we could refresh used gas sensors by simply exposing them to fresh N2 gas without any heat treatment. Additionally, our sensors can be bent to form versatile practical sensor devices, such as tube-shape sensors for ventilation tubes. This work shows a simple but powerful method for building refreshable and selective gas sensors for versatile industrial and academic applications.