Lead-free CsSnCl3 perovskite nanocrystals: rapid synthesis, experimental characterization and DFT simulations.
Md Shahjahan AliSubrata DasYasir Fatha AbedM A BasithPublished in: Physical chemistry chemical physics : PCCP (2021)
Lead-free metal halide perovskites have attracted great attention as light harvesters due to their promising optoelectronic and photovoltaic properties. In this investigation, we have successfully synthesized thermally stable cubic phase cesium tin chloride (CsSnCl3) perovskite nanocrystals with improved surface morphology by adopting a rapid hot-injection technique. The excellent crystalline quality of these cubic shaped nanocrystals was confirmed by high-resolution transmission electron microscopy imaging. The binding of organic ligands on the surface of the sample was identified and characterized using nuclear magnetic resonance spectroscopy. UV-visible spectroscopy confirmed that the CsSnCl3 nanocrystals have a direct band gap of ∼2.98 eV, which was further confirmed using steady-state photoluminescence spectroscopy. The band edge positions calculated using the Mulliken electronegativity approach predicted the potential photocatalytic capability of the as-prepared nanocrystals, which was then experimentally corroborated through the photodegradation of rhodamine-B dye under both visible and UV-visible irradiation. Our theoretical calculations employing experimentally obtained structural parameters within the generalized gradient approximation (GGA) and GGA+U methods demonstrated a 90% accurate estimation of the experimentally observed optical band gap when Ueff = 6 eV was considered. The ratio of the effective mass of the hole and electron expressed as was also calculated for Ueff = 6 eV. Based on this theoretical calculation and experimental observation of the photocatalytic performance of CsSnCl3 nanocrystals, we have proposed a rational interpretation of the "D" value. We think that a "D" value of either much smaller or much larger than 1 is an indication of the low recombination rate of the photogenerated electron-hole pairs and the high photocatalytic efficiency of the photocatalyst. We believe that this comprehensive investigation might be helpful for the large-scale synthesis of thermally stable cubic CsSnCl3 nanocrystals and also for a greater understanding of their potential in photocatalytic, photovoltaic and other prominent optoelectronic applications.
Keyphrases
- room temperature
- solar cells
- high resolution
- visible light
- energy transfer
- highly efficient
- perovskite solar cells
- electron microscopy
- ionic liquid
- reduced graphene oxide
- single molecule
- mass spectrometry
- dna damage
- working memory
- oxidative stress
- density functional theory
- aqueous solution
- molecular docking
- risk assessment
- dna repair
- molecular dynamics simulations
- loop mediated isothermal amplification
- water soluble