Voltammetric immunosensor for E-cadherin promoter DNA methylation using a Fe3O4-citric acid nanocomposite and a screen-printed carbon electrode modified with poly(vinyl alcohol) and reduced graphene oxide.
Roya KhodaeiAnita AhmadySeyyed Mehdi KhoshfetratSoheila KashanianSeyed Mohammad TavangarKobra OmidfarPublished in: Mikrochimica acta (2019)
Silencing of tumor suppressor genes (E-cadherin) by promoter DNA methylation may lead to the development of invasive phenotypes in epithelial tissues. The authors describe an electrochemical nanobiosensor for early detection and screening of circulating methylated DNA as a biomarker for cancers. First, the antibody against 5-methylcytosine was physically immobilized onto modified with reduced graphene oxide and polyvinylalcohol. In the next step, methylated target DNA in samples was hybridized with ssDNA probe conjugated to Fe3O4-citric acid nanocomposites and placed on the modified electrode. Then, the hexacyanoferrate redox system was added and electron transfer recorded. Cyclic voltammetry and electrochemical impedance spectroscopy showed that the modification process was well accomplished. Quantitative measurement of E-cadherin DNA promoter methylation was performed using differential pulse voltammetry. The electrochemical analysis achieved in the presence and absence of nonmethylated DNA mixed with samples indicated the high specificity and selectivity in methylation analysis using this system. With the linear range of concentration from 1 × 10-4 ng.mL-1 to 20 ng.mL-1 and the detection limit of 9 × 10-5 ng.mL-1, this method represents a promising approach for analysis of other biomarkers. Graphical abstract A label free electrochemical nanobiosensor was constructed for detection of methylated circulating cell-free DNA using screen-printed carbon electrode (SPCE) modified with reduced graphene oxide (rGO) and polyvinylalcohol (PVA).
Keyphrases
- reduced graphene oxide
- label free
- dna methylation
- gold nanoparticles
- genome wide
- circulating tumor
- single molecule
- gene expression
- cell free
- electron transfer
- copy number
- high throughput
- transcription factor
- solid state
- blood pressure
- low cost
- young adults
- quantum dots
- ionic liquid
- magnetic resonance
- mass spectrometry
- neural network