Improving OCT Image Segmentation of Retinal Layers by Utilizing a Machine Learning Based Multistage System of Stacked Multiscale Encoders and Decoders.
Arunodhayan Sampath KumarTobias SchlosserHolger LangnerMarc RitterDanny KowerkoPublished in: Bioengineering (Basel, Switzerland) (2023)
Optical coherence tomography (OCT)-based retinal imagery is often utilized to determine influential factors in patient progression and treatment, for which the retinal layers of the human eye are investigated to assess a patient's health status and eyesight. In this contribution, we propose a machine learning (ML)-based multistage system of stacked multiscale encoders and decoders for the image segmentation of OCT imagery of the retinal layers to enable the following evaluation regarding the physiological and pathological states. Our proposed system's results highlight its benefits compared to currently investigated approaches by combining commonly deployed methods from deep learning (DL) while utilizing deep neural networks (DNN). We conclude that by stacking multiple multiscale encoders and decoders, improved scores for the image segmentation task can be achieved. Our retinal-layer-based segmentation results in a final segmentation performance of up to 82.25±0.74% for the Sørensen-Dice coefficient, outperforming the current best single-stage model by 1.55% with a score of 80.70±0.20%, given the evaluated peripapillary OCT data set. Additionally, we provide results on the data sets Duke SD-OCT, Heidelberg, and UMN to illustrate our model's performance on especially noisy data sets.
Keyphrases
- optical coherence tomography
- deep learning
- machine learning
- diabetic retinopathy
- convolutional neural network
- artificial intelligence
- optic nerve
- big data
- electronic health record
- neural network
- case report
- endothelial cells
- atomic force microscopy
- magnetic resonance
- computed tomography
- solar cells
- induced pluripotent stem cells
- high speed